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A dry spell is defined as the consecutive number of days with precipitation 
less than a specified threshold value of a standardised precipitation index 
(SPI). A cumulative effect of these dry spells amount to drought events and 
thereby negatively affect socio-economic activities in the communities. The 
current study aimed at determining the influence of El Niño-Southern 
Oscillation (ENSO) aided by Southern Oscillation Index (SOI) in order to 
make easy prediction given clear SOI cyclicity of anything from 3 to 7 years. 
The study used SPI to define dry spells and was also used a conceptual 
framework to quantify dry spells. A spectral analysis was also applied to SPI-
1 time series datasets to determine return levels to provide government 
and all relevant authorities with behavioural characteristics of dry spells in 
the area for proactive mitigation strategies. Main results of this study ENSO 
having no direct influence over all the selected station’s precipitation. All 
the stations showed an average of 12 months or 1 year return level. This 
implies that after every 1 year, the study area is highly likely to experience 
dry spells which could lead to detrimental effects of the most important 
amenities of the study area. This phenomenon provides authorities with 
relevant information to plan proactively as dry spells may amount or 
graduate to drought events and thereby adversely affect water consuming 
activities in the area. 
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Introduction  
El Niño - Southern Oscillation (ENSO) is an irregular 
regular variation in the temperature of the winds 
and the surface of the sea in the tropical Eastern 
Pacific which affects the tropics and the subtropics 
(Rajagopalan, Lall, & Cane, 1997). The temperature 
warming stage is referred to as El Niño or La Niña 
(Straus & Shukla, 2002). In combination with the 
change of the sea temperature, the Southern 
Oscillation is the accompanying atmospheric 
component: El Niño is accompanied by a high air 
pressure on the western Pacific and La Niña tropical 
air surface (Straus & Shukla, 2002). The two periods 
last several months and usually occur with varying 
intensities every couple of years (Borlace, Cai, & 
Santoso, 2013). 

The two phases relate to the traffic of walkers 
discovered in the early 20th century by Gilbert 
Walker (Letson, Podestá, Messina, & Ferreyra, 
2001). The pressure gradient force of the Walker 
circulation is caused by a high-pression region in the 
eastern Pacific and a low-pressure system in 
Indonesia (Fasullo & Webster, 2002). Deep sea 
waters are reduced or eliminated from the 
weakening or reversal of the circulation of walkers 
(including trade winds), which creates El Niño by 
increasing the surface of the oceans to above 
average temperatures (Fasullo & Webster, 2002). 
La Nina is caused by a very strong Walker 
circulation, which induces greater upwelling and 
colder ocean temperatures. Increased precipitation 
occurs along the Gulf coast and Southeast during 
the El Nina period of ENSO due to a higher than 
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average and more southerly polar jet stream (Lin, 
Liou, & Huang, 2015). During El Nina events in late 
winter and early spring, Hawaii should predict drier-
than-average weather (Romero-Centeno, Zavala-
Hidalgo, Gallegos, & O’Brien, 2003). 
Methods and materials  
Data quality control: Stationarity test 
When non-stationary time series data is used in 
forecasting models, the effects are inaccurate and 
spurious, resulting in poor interpretation and 
forecasting (Von Sachs & Neumann, 2000). The 
problem can be solved by converting the time series 
data so that it becomes stationary (Gregoriou & 
Kontonikas, 2006). ADF and KPSS are fast stationary 
statistical checks that will help a researcher 
understand the data he or she is working with. The 
bulk of mathematical forecasting methods are 
based on the premise that time series are roughly 
stationary. A stationary series is reasonably simple 
to forecast essentially assume that its statistical 
properties will be the same in the future as they 
were in the past (Sabavala & Morrison, 1981). The 
first step in transforming non-stationary data into 
stationary data (trend removal) so that 
mathematical forecasting techniques can be 
applied is to evaluate time series trends (Ajewole, 
Adejuwon, & Jemilohun, 2020). Having the data 
stationary, choosing the correct model, and 
assessing model accuracy are the three basic 
phases in creating a high-quality forecasting time 
series model (Vezzoli, Mercogliano, & Pecora, 
2013). 
Correlational analysis  
Correlation analysis is a mathematical technique for 
determining the intensity of a relationship between 
two quantitative variables (Manatsa, Chingombe, & 
Matarira, 2008). A high correlation indicates that 
two or more variables have a close relationship, 
while a low correlation indicates that the variables 

are barely related. In other words, it is the process 
of measuring the intensity of the relationship using 
statistical data that is available (Manatsa et al., 
2008). This methodology is inextricably linked to 
linear regression analysis, which is a statistical 
method for modelling the relationship between a 
dependent variable, known as the answer, and one 
or more explanatory or independent variables 
(Manatsa et al., 2008). The aim of this paper is to 
provide a general overview of correlation analysis 
as a tool for evaluating ENSO influences on 
precipitation patterns in the study area. 
Spectral Analysis 
Periodic behaviour can be seen in a variety of time 
series. Periodic behaviour can be extremely 
complex (Von Sachs & Neumann, 2000). The 
technique of spectral analysis allows us to discover 
underlying periodicities. We must first transform 
data from the time domain to the frequency 
domain before we can perform spectral analysis 
(Mossaad & Wu, 1984). The spectral analysis was 
used in this paper to determine the return periods 
of the dry spells risk for the study area in order to 
make informed decisions. 
Results and discussions  
 
Figure 1 depicts graphs of all stations’ precipitation 
from 1982 to 2019. This is to visualise the datasets 
and determine outliers existent in the datasets 
across all candidate stations. In this figure 1, it can 
be noted that there are three clear such outliers all 
from the East Gippsland. After the removal of all 
outliers by SPSS software, all precipitation datasets 
from all the candidate stations were tested for 
stationarity as shown in table 1. All p-values were 
significant with values less than the specified 
significance level of 5% across all stations, implying 
that further analysis could be carried out without 
results being spurious. 

 
 

 
Figure 1: Graph of precipitation of Victorian state of Australia 
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Table 1: Precipitation’s Dickey-Fuller test (ADF (stationary) 

Station Tau (Observed value) Tau (Critical value) p-value (one-tailed) alpha 

South Gippsland -6.674 -3.389 < 0.0001 0.05 

East Gippsland -5.674 -3.389 < 0.0001 0.05 

Colac-Otway -6.357 -3.389 < 0.0001 0.05 

Glenelg -6.357 -3.389 < 0.0001 0.05 

Murrindindi -6.698 -3.389 < 0.0001 0.05 

Hindimash -7.328 -3.389 < 0.0001 0.05 

Loddon -6.307 -3.389 < 0.0001 0.05 

Mildura -6.260 -3.389 < 0.0001 0.05 

 
Figure 2 and table 2 show a graph of Southern 
oscillation index and descriptive statistics for 
Precipitation and Southern Oscillation Index (SOI) 
respectively. From the graph of SOI, clear cycles can 
be seen, and these are approximately 7 to 10 years. 
Table 2 shows the top five stations receiving 

relatively high precipitation that ranges from to 
57.7 to 73.2mm. However, these five stations 
exhibit relatively high variability as depicted by the 
calculated standard deviations. The SOI seems to 
vary homogeneously with the last three stations 
with the standard deviation of around 22.  

 

 
Figure 2: Graph of the Southern Oscillation Index time series 

 
Table 2: Descriptive statistics for Precipitation and Southern oscillation index 

Station Observations Minimum Maximum Mean 
Std. 

deviation 

South Gippsland 456 0.370 188.750 72.310 39.308 
East Gippsland 456 0.410 249.840 64.853 40.932 
Colac-Otway 456 0.140 162.830 57.744 32.558 
Glenelg 456 0.140 162.830 57.744 32.558 
Murrindindi 456 0.210 161.630 60.033 35.827 
Hindimash 456 0.070 147.060 31.332 23.448 
Loddon 456 0.090 178.040 34.030 26.061 
Mildura 456 0.010 158.800 22.941 22.061 
SOI 456 -33.300 27.100 -1.605 10.843 

 
Post analysis of the descriptive statistics of 
precipitation datasets of all stations and SOI, A non-
parametric correlation test (Spearman’s test) was 
applied to test for any correlation presents amongst 
stations and SOI, to check if SOI has any influence 
over precipitation patterns of the study area. Table 
2 show a correlation matrix of precipitation of all 
stations and SOI. It can be seen that most stations 
correlated strongly positive with one another 

except with SOI where correlation coefficients are 
all weak. None of the stations’ precipitation 
datasets correlated significantly with SOI. This 
phenomenon clearly indicates that SOI has no 
special influence on the precipitation patterns of 
the study area. This result is in line with literature 
where not all stations’ precipitation is influenced by 
SOI.  

 
Table 3: Spearman’s correlation matrix: SOI vs Precipitation 
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Station 
South 

Gippsland 
East 

Gippsland 
Colac-
Otway 

Glenelg Murrindindi Hindimash Loddon Mildura SOI 

South 
Gippsland 1.00 0.53 0.86 0.86 0.81 0.65 0.63 0.46 0.15 
East 
Gippsland 0.53 1.00 0.48 0.48 0.59 0.40 0.53 0.48 0.18 
Colac-
Otway 0.86 0.48 1.00 1.00 0.86 0.80 0.75 0.57 0.12 
Glenelg 0.86 0.48 1.00 1.00 0.86 0.80 0.75 0.57 0.12 
Murrindindi 0.81 0.59 0.86 0.86 1.00 0.82 0.90 0.72 0.21 
Hindimash 0.65 0.40 0.80 0.80 0.82 1.00 0.89 0.80 0.17 
Loddon 0.63 0.53 0.75 0.75 0.90 0.89 1.00 0.85 0.22 
Mildura 0.46 0.48 0.57 0.57 0.72 0.80 0.85 1.00 0.25 
SOI 0.15 0.18 0.12 0.12 0.21 0.17 0.22 0.25 1.00 

Values in bold are different from 0 with a significance level alpha=0.05  
 

Table 4: Spearman’s correlation matrix: SOI vs SPI-1 

Station  
South 

Gippsland 
East 

Gippsland 
Colac-
Otway 

Glenelg Murrindindi Hindimash Loddon Mildura SOI 

South 
Gippsland 1 0.579 0.844 0.844 0.772 0.573 0.587 0.421 0.130 
East 
Gippsland 0.579 1 0.517 0.517 0.606 0.435 0.536 0.467 0.111 
Colac-Otway 0.844 0.517 1 1.000 0.834 0.747 0.730 0.552 0.119 
Glenelg 0.844 0.517 1.000 1 0.834 0.747 0.730 0.552 0.119 
Murrindindi 0.772 0.606 0.834 0.834 1 0.802 0.896 0.722 0.092 
Hindimash 0.573 0.435 0.747 0.747 0.802 1 0.890 0.816 0.080 
Loddon 0.587 0.536 0.730 0.730 0.896 0.890 1 0.849 0.079 
Mildura 0.421 0.467 0.552 0.552 0.722 0.816 0.849 1 0.062 
SOI 0.130 0.111 0.119 0.119 0.092 0.080 0.079 0.062 1 

Values in bold are different from 0 with a significance level alpha=0.05    
 
Having determined that SOI has no influence on all 
stations’ precipitation, Standardised Precipitation 
Indices (SPI) were computed on SPI-1 temporal 
scale to characterise dry spells in the study area. 
Table 5 shows the results of descriptive statistics of 
dry spells’ duration in Victoria state computed from 

a Drought Monitoring and Prediction software 
(DMAP). From this table, it can be seen that all the 
stations experience relatively the same amount of 
dry spells on average. This behaviour is confirmed 
by the non-parametric Kruskal-Wallis test in table 6 
with a non-significant p-value of 0.978 > 0.05.  

 
Table 5: Summary descriptive statistics of dry spells’ duration in Victoria state 

Station 
Obs. with 

missing data 

Obs. 
without 
missing 

data 

Minimum Maximum Mean 
Std. 

deviation 

Colac-Otway 4 94 28.000 730.000 60.181 79.484 

East Gippsland 0 98 28.000 730.000 63.959 79.536 

Glenelg 4 94 28.000 730.000 60.181 79.484 

Hindimash 4 94 28.000 761.000 66.330 86.283 

Loddon 1 97 28.000 730.000 64.856 84.482 

Mildura 0 98 28.000 730.000 64.224 77.964 

Murrindindi 6 92 28.000 730.000 63.489 86.767 

South Gippsland 4 94 28.000 730.000 58.585 79.109 

 
Table 6: Kruskal-Wallis test / Two-tailed test: Durations 
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K (Observed value) 1.627 
K (Critical value) 14.067 
DF 7 
p-value (one-tailed) 0.978 
alpha 0.05 

An approximation has been used to compute the p-value. 
 
Table 7 shows descriptive statistics of dry spells’ 
severities in the study area computed at threshold 
of below zero aided by DMAP. Visually all stations 
have similar mean severities and variability as 
computed by standard deviations. However, a 
further test to confirm this observation was carried 
out as shown in table 8, the results disconfirmed 

the observed visual similarity where a two-tailed 
test Kruskal-Wallis had a significant p-value of 
0.008< 5%. Although the candidate stations 
revealed similar behavoural patterns in terms of dry 
spells duration, there is a significant difference in 
the amount of severities each receives as shown by 
the test in table 8.  

 
Table 7: Summary descriptive statistics of dry spells’ severities in Victoria state 

Variable 
Obs. with 
missing 

data 

Obs. 
without 
missing 

data 

Minimum Maximum Mean 
Std. 

deviation 

Colac-Otway 4 94 0.000 76.900 1.651 7.901 

East Gippsland 0 98 0.002 71.338 1.632 7.177 

Glenelg 4 94 0.000 76.900 1.651 7.901 

Hindimash 4 94 0.028 61.703 1.851 6.382 

Loddon 1 97 0.018 59.863 1.829 6.121 

Mildura 0 98 0.005 53.032 1.855 5.368 

Murrindindi 6 92 0.000 73.148 1.740 7.619 

South Gippsland 4 94 0.026 77.088 1.686 7.914 

 
Table 8: Kruskal-Wallis test / Two-tailed test: Severities 

K (Observed value) 19.025 

K (Critical value) 14.067 

DF 7 

p-value (two-tailed) 0.008 

alpha 0.05 

An approximation has been used to compute the p-value 
 
Having observed similarities and differences of the 
stations on two drought parameters namely 
duration and severity, XLSTAT computer software 
was used to fit suitable probability distributions on 
all SPI-1’s (dry spells). Figure 3 shows the spectral 
densities for each station’s SPI-1 and fitted 
probability distribution’s parameters. The 
determined parameters were used to compute the 

return level or periodicities of each station’s dry 
spell in the study area. All the stations showed an 
average of 12 months or 1 year return level. This 
implies that after every 1 year, the study area is 
highly likely to experience dry spells which could 
lead to detrimental effects of the most important 
amenities of the study area.  
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Statistic Value p-value 

Fisher's kappa 23.577 < 0.0001 
Bartlett's Kolmogorov-
Smirnov 0.506 < 0.0001 

Spectral density peak: 12.36 months 

 

Statistic Value p-value 

Fisher's kappa 18.490 < 0.0001 

Bartlett's Kolmogorov-Smirnov 0.437 < 0.0001 

Spectral density peak: 12.36 months 

 

Statistic Value p-value 

Fisher's kappa 26.629 < 0.0001 

Bartlett's Kolmogorov-Smirnov 0.523 < 0.0001 

Spectral density peak: 18.5 months 

 

Statistic Value p-value 

Fisher's kappa 26.629 < 0.0001 

Bartlett's Kolmogorov-Smirnov 0.523 < 0.0001 

Spectral density peak: 18.5 months 

 

Statistic Value p-value 

Fisher's kappa 22.699 < 0.0001 

Bartlett's Kolmogorov-Smirnov 0.494 < 0.0001 

Spectral density peak: 12.36 months 
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Statistic Value p-value 

Fisher's kappa 15.562 < 0.0001 

Bartlett's Kolmogorov-Smirnov 0.365 < 0.0001 

Spectral density peak: 12.36 months 

 

Statistic Value p-value 

Fisher's kappa 17.258 < 0.0001 

Bartlett's Kolmogorov-Smirnov 0.383 < 0.0001 

Spectral density peak: 12.36 months 

 

Statistic Value p-value 

Fisher's kappa 16.218 < 0.0001 

Bartlett's Kolmogorov-Smirnov 0.303 < 0.0001 

Spectral density peak: 12.36 months 

Figure 3: Spectral density graphs depicting peak periods/circles 
 
Conclusion and recommendations  
 
In conclusion, El Niño–Southern Oscillation (ENSO) 
which is the periodic variation in winds and sea 
surface temperature over the tropical eastern 
Pacific Ocean, affecting the climate of much of the 
tropics and subtropics does not always have 
influence on all areas’ precipitation. From the 
current study results a non-parametric correlation 
test (Spearman) results ENSO having no direct 
influence over all the selected station’s 
precipitation. The determined parameters from 
suitably fitted probability distributions were used 
to compute the return level or periodicities of each 
station’s dry spell in the study area. All the stations 
showed an average of 12 months or 1 year return 
level. This implies that after every 1 year, the study 
area is highly likely to experience dry spells which 
could lead to detrimental effects of the most 
important amenities of the study area. This 
phenomenon provides authorities with relevant 
information to plan proactively as dry spells may 

amount or graduate to drought events and thereby 
adversely affect water consuming activities in the 
area.  
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