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Drought is a major environmental problem that affects agriculture, water 
resources, and communities around the world. In the Lesotho Highlands 
commercial dams, drought can have a significant impact on agricultural 
production, water supply, and local livelihoods. Understanding the patterns 
and severity of drought is crucial for effective water management and 
agricultural planning. This study aimed to analyse and understand the 
patterns of agricultural drought in the Lesotho Highlands commercial dams 
through the use of the Standardized Precipitation Index (SPI) and the theory 
of runs, as well as various drought parameters. The study used Average Dry 
Spell Duration, Drought Tendency, Longest Dry Spell Duration, Longest 
Multi-year Drought, Largest Single Year Drought, Standard Total 
Accumulative Dry Spell, and Number of Consecutive SPI-values, to provide 
a comprehensive analysis of the drought situation. The results revealed that 
the precipitation levels at the four dams were relatively similar, but with a 
potential increase in precipitation at Muela Dam. The SPI-3 and SPI-6 
analyses showed a significant downward trend indicating an increase in 
dryness in the area. The drought parameters did not show significant 
differences between the stations/dams, indicating similar levels of drought 
across the dams. The study recommends regular monitoring of precipitation 
and drought conditions using the SPI and other water-balance drought 
indices, development of water conservation and management strategies, 
use of drought-resistant crops and water-efficient agriculture practices, and 
increased collaboration among stakeholders for sustainable water 
management and agricultural resilience. 
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Introduction 
Drought is a serious environmental problem that 
affects many regions around the world, particularly 
in arid and semi-arid areas (Tsakiris and Vangelis, 
2005).. Drought can have significant impacts on 
agriculture, water resources, and local 
communities, leading to crop failures, water 
shortages, and economic losses (Wilhite, 2000). In 
the Lesotho Highlands, drought is a recurring 
problem that has a significant impact on 
agricultural production, water supply, and 
livelihoods. Understanding the patterns and 
severity of drought is essential for effective water 

management and agricultural planning (Mckee et 
al. 1993). In this study, we aimed to characterize the 
agricultural drought patterns in the Lesotho 
Highlands commercial dams using the SPI and the 
theory of runs. The theory of runs is a statistical 
method used to analyze the occurrence of 
consecutive events in a time series, such as drought 
events. We also used various drought parameters, 
including Average Dry Spell Duration, Drought 
Tendency, Longest Dry Spell Duration, Longest 
Multi-year Drought, Largest Single Year Drought, 
Standard Total Accumulative Dry Spell, and Number 
of Consecutive SPI-values, to provide a 
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comprehensive analysis of the drought situation. 
The study area includes the four commercial dams 
in the Lesotho Highlands, namely Mohale Dam, 
Katse Dam, Muela Dam, and Maetolong Dam. 
These dams are critical for irrigation, hydropower 
generation, and domestic water supply for the 
surrounding communities. The objectives of this 
study were to (i) analyse the precipitation patterns 
at the four commercial dams using the SPI, (ii) 
identify the occurrence and severity of drought 
events using the theory of runs and drought 
parameters, and (iii) provide recommendations for 
sustainable water management and agricultural 
resilience. The results of this study can help to 
improve the understanding of agricultural drought 
patterns in the Lesotho Highlands and guide the 
development of effective drought mitigation and 
management strategies. The findings can also 
contribute to the broader scientific knowledge of 
drought characterization and monitoring using the 
SPI and the theory of runs. 
Definition, causes, and types of drought 
Drought is a common and devastating natural 
hazard that affects many parts of the world, leading 
to water scarcity and crop failure. The United 
Nations defines drought as "a period of abnormally 
dry weather long enough to cause a serious 
hydrological imbalance" (UNEP, 2021). This 
literature review will provide an overview of the 
definition, causes, and types of drought, drawing on 
existing literature and research. Drought can be 
defined as a prolonged period of below-average 
precipitation or water availability that leads to 
water scarcity, reduced stream flow, and low soil 
moisture levels (IPCC, 2014). Drought can occur due 
to various factors, including climate variability and 
change, land-use changes, and overconsumption of 
water resources. 
Drought can be caused by both natural and 
anthropogenic factors. Natural factors include 
climate variability and change, which can lead to 
shifts in precipitation patterns and prolonged dry 
spells. For instance, studies have shown that the 
frequency and severity of droughts in many parts of 
the world are linked to changes in global and 
regional climate patterns (Dai, 2011; IPCC, 2014). 
Anthropogenic factors that contribute to drought 
include overexploitation of water resources, 
deforestation, land-use changes, and urbanization 
(Wang et al., 2019). These activities can reduce the 
capacity of the soil to retain moisture, reduce 
vegetation cover, and increase surface runoff, 
leading to water scarcity and drought. 
Drought can be classified into different types based 
on various criteria. The most commonly recognized 
types of drought include: (i) Meteorological 
drought: This type of drought occurs when there is 

a prolonged period of below-average precipitation, 
leading to a water deficit. Meteorological drought 
can last from a few weeks to several years (IPCC, 
2014). (ii) Agricultural drought: This type of drought 
occurs when there is a shortage of soil moisture 
that affects crop growth and yields. Agricultural 
drought can lead to food insecurity, water scarcity, 
and poverty (FAO, 2021). (iii) Hydrological drought: 
This type of drought occurs when there is a 
prolonged period of below-average stream flow, 
groundwater recharge, or reservoir storage. 
Hydrological drought can affect water availability 
for domestic, industrial, and agricultural uses (IPCC, 
2014). (iv) Socioeconomic drought: This type of 
drought occurs when the impacts of drought affect 
people's livelihoods and socio-economic activities. 
Socioeconomic drought can lead to income loss, 
migration, and social unrest (Wilhite et al., 2014). 
Impacts of drought on agriculture, water 
resources, and communities 
Drought is a recurring and pervasive phenomenon 
that affects a range of sectors, such as agriculture, 
water resources, and communities (Wilhite, 2018). 
Droughts pose serious challenges to human well-
being, particularly in the face of climate change. 
This literature review examines the impacts of 
drought on agriculture, water resources, and 
communities, with particular emphasis on the ways 
in which these impacts are felt by vulnerable 
populations. 
Droughts have serious impacts on agricultural 
production and food security, particularly in 
developing countries where subsistence farming is 
widespread. Studies have shown that droughts 
reduce crop yields and livestock productivity, 
causing significant economic losses for farmers and 
threatening food security (FAO, 2018). In Africa, for 
instance, droughts have been associated with 
significant declines in agricultural production, 
leading to food shortages and malnutrition among 
vulnerable populations (Morton et al., 2018). 
Droughts also have indirect impacts on agriculture 
through changes in land use, soil degradation, and 
water scarcity. For instance, prolonged droughts 
can lead to the loss of fertile soil, desertification, 
and the expansion of drylands, making it difficult for 
farmers to cultivate crops and maintain livestock 
(Zhou et al., 2020). This can have serious 
consequences for rural communities that depend 
on agriculture for their livelihoods, forcing them to 
migrate or rely on food aid. 
Droughts also have significant impacts on water 
resources, particularly in regions where water 
scarcity is already a concern. Droughts exacerbate 
water scarcity, leading to reduced water availability 
for irrigation, domestic use, and industrial purposes 
(UN, 2020). In many cases, droughts lead to water 
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rationing, with severe implications for households 
and businesses. 
Droughts also have impacts on water quality, 
particularly in regions where surface water sources 
are depleted. As groundwater becomes the primary 
source of water during droughts, its quality can 
decline due to over-pumping and contamination. 
This can lead to health risks for communities that 
rely on groundwater for drinking, cooking, and 
washing (Graham et al., 2019). Droughts have 
serious impacts on communities, particularly those 
that are vulnerable and marginalized. Droughts can 
lead to food and water scarcity, malnutrition, and 
health risks, particularly among children and the 
elderly (UN, 2020). Droughts also have social and 
economic impacts, including loss of income, 
increased poverty, and reduced access to education 
and healthcare. Vulnerable communities are 
particularly affected by droughts, including those 
living in rural areas, low-income households, and 
indigenous communities. These populations often 
lack access to alternative sources of income or 
resources to cope with the impacts of droughts, 
exacerbating their vulnerability (UN, 2020). 
Drought monitoring and assessment: remote 
sensing and drought indices 
Drought is a significant threat to food security, 
water resources, and ecosystems worldwide. 
Monitoring and assessing drought is essential to 
mitigate its impacts on human lives and livelihoods. 
Remote sensing and drought indices are two widely 
used tools for this purpose. According to Tadesse et 
al. (2015), remote sensing can provide valuable 
information on soil moisture, vegetation, and other 
environmental parameters that are indicators of 
drought. Similarly, Guttman (1998) notes that 
drought indices are mathematical models that are 
used to quantify the severity and duration of 
drought based on precipitation, temperature, and 
soil moisture data. In this literature review, we will 
examine the state-of-the-art research on drought 
monitoring and assessment using remote sensing 
and drought indices.Remote sensing involves the 
acquisition of information about an object or 
phenomenon without direct physical contact. In 
drought monitoring, remote sensing is used to 
collect data on various environmental parameters. 
According to Ozdogan et al. (2016), satellite-based 
remote sensing is the most widely used technique 
for drought monitoring. This approach involves the 
use of satellites to collect data on a wide range of 
environmental parameters, including surface 
temperature, vegetation cover, and soil moisture. 
Similarly, Bastiaanssen et al. (2005) note that 
airborne remote sensing can provide higher spatial 
resolution and greater flexibility in data collection 
than satellite-based remote sensing. Ground-based 

remote sensing, on the other hand, is less expensive 
than satellite or airborne remote sensing, but it 
offers lower spatial resolution and is limited in 
terms of coverage area (Ozdogan et al., 2016). 
Drought indices are mathematical models that are 
used to quantify the severity and duration of 
drought. Several drought indices are used for 
drought monitoring, including the Standardized 
Precipitation Index (SPI), the Palmer Drought 
Severity Index (PDSI), and the Vegetation Health 
Index (VHI). According to McKee et al. (1993), the 
SPI is a widely used drought index that is based on 
precipitation data. The SPI measures the deviation 
of current precipitation from long-term average 
precipitation for a given location. Similarly, Palmer 
(1965) notes that the PDSI is a widely used drought 
index that is based on temperature, precipitation, 
and soil moisture data. The PDSI provides a 
measure of the severity of drought and can be used 
to monitor drought conditions over long periods of 
time. The VHI, on the other hand, is a drought index 
that is based on remote sensing data. According to 
Kogan (1997), the VHI uses data on vegetation 
cover, surface temperature, and soil moisture to 
generate an index that provides information on the 
health of vegetation and the severity of drought. 
Management and mitigation of drought: water 
conservation, drought-resistant crops, and policy 
interventions 
 
Drought is a natural phenomenon that can have 
significant economic, social, and environmental 
impacts, particularly in the face of climate change. 
Effective management and mitigation strategies are 
crucial to minimize the negative effects of drought. 
In this literature review, we examine current 
research on three strategies for managing and 
mitigating drought: water conservation, drought-
resistant crops, and policy interventions. 
Water conservation measures can be categorized 
into three types: structural, non-structural, and 
technological. Structural measures include 
construction of dams, reservoirs, and water 
harvesting structures, while non-structural 
measures involve changing water-use behavior, 
reducing wastage, and promoting water-saving 
practices. Technological measures encompass the 
use of efficient irrigation systems, drip irrigation, 
and sprinkler irrigation. Wang et al. (2021) found 
that water conservation measures, including 
rainwater harvesting and irrigation management, 
were effective in increasing crop yields and 
reducing water consumption during droughts in 
China. 
Drought-resistant crops are those that can survive 
and maintain productivity under low water 
conditions. These crops are developed through 
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conventional breeding techniques, genetic 
modification, and biotechnology. Lobell et al. 
(2014) found that the adoption of drought-resistant 
maize varieties led to a 10-20% increase in yields 
and a 50% reduction in yield variability during 
droughts in Sub-Saharan Africa. 
Policy interventions can take various forms, 
including drought monitoring and early warning 
systems, water pricing mechanisms, and drought 
insurance schemes. Drought monitoring and early 
warning systems can help identify areas at risk of 
drought and provide early warnings, enabling 
farmers to take appropriate measures such as 
planting drought-resistant crops or implementing 
water conservation measures. Water pricing 
mechanisms can incentivize water conservation by 
increasing the cost of water during droughts. 
Drought insurance schemes can provide financial 
compensation to farmers in the event of crop 
failure due to drought. Gbetibouo and Ringler 
(2009) found that the introduction of drought 
insurance schemes led to a 30% reduction in the 
vulnerability of smallholder farmers to drought in 
South Africa. 
 
Methods and materials 
 
Descriptive statistics is a branch of statistics that 
deals with the summarization and interpretation of 
data (Smith, 2010). In this research, descriptive 
statistics were used to summarize and describe the 
precipitation data and drought parameters. The 
descriptive statistics included measures such as 
mean, median, minimum, maximum, and standard 
deviation, which were used to summarize the 
precipitation data and the drought parameters for 
each of the four commercial dams in the Lesotho 
Highlands. The descriptive statistics provided a 
summary of the overall pattern of the Standardized 
Precipitation Index (SPI) and helped to identify any 
outliers or anomalies in the data. The descriptive 
statistics were used to describe the data. This 
information was used to understand the general 
description of precipitation in the area around the 
four commercial dams.  
The theory of runs is a statistical method used to 
detect trends in a time series data. In drought 
analysis, the theory of runs is applied to examine 
the pattern of changes in precipitation levels over 
time. The method involves counting the number of 
runs of consecutive values above or below a certain 
threshold, such as the mean value. The theory of 
runs is based on the assumption that if the time 
series data is not randomly distributed, then there 
should be an unequal number of runs above and 
below the mean value (Bai et al. 2013). 

In drought analysis, the theory of runs can be used 
to detect the onset, duration, and end of drought 
events. For example, a run of consecutive values 
below the mean value would indicate a period of 
drought, while a run of consecutive values above 
the mean value would indicate a period of 
abundant precipitation. The length of the run can 
provide information on the duration of the drought, 
while the number of runs can provide information 
on the frequency of droughts in the area. The 
theory of runs has been widely used in drought 
analysis and has been found to be a useful tool for 
characterizing the spatial and temporal distribution 
of drought events (Bai et al., 2013).  
The Standardized Precipitation Index (SPI) is a 
widely used approach in drought analysis, which 
provides a standardized measure of precipitation 
deficit or surplus relative to the mean over a 
specified time period. This approach is based on the 
assumption that precipitation is a random process 
and can be modelled using a probability 
distribution. The SPI is calculated by standardizing 
the observed precipitation values using the mean 
and standard deviation of the precipitation data, 
which are estimated over a long-term period. This 
standardization process helps to correct for the 
non-stationarity of precipitation, making it possible 
to compare precipitation conditions across 
different time periods and locations. 
The SPI formula is as follows: 
 SPI = (Xᵢ - μ) / σ ……………….(1) 
where: 
Xᵢ = precipitation amount for a particular month or 
time period 
μ = long-term mean precipitation for the same 
month or time period 
σ = standard deviation of precipitation for the same 
month or time period 
The SPI is calculated for various time scales, such as 
1-month, 3-month, 6-month, 12-month, etc., 
depending on the specific application. The SPI 
values can be positive or negative, with positive 
values indicating wetter than average conditions 
and negative values indicating drier than average 
conditions. The probability distribution used to 
calculate the Standardized Precipitation Index (SPI) 
is typically the Gamma distribution. The Gamma 
distribution is a continuous probability distribution 
that is commonly used to model positive, right-
skewed data, such as precipitation amounts. The 
Gamma distribution has two parameters, shape (α) 
and scale (β), which are estimated from the 
historical precipitation data for a particular location 
and time period. The probability density function 
(PDF) for the Gamma distribution is given by: 
f(x;α,β) = x^(α-1) * e^(-x/β) / [β^α * Γ(α)]…...(2) 
where: 
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x = precipitation amount 
α = shape parameter 
β = scale parameter 
Γ(α) = Gamma function 
The Gamma distribution is useful for modelling 
precipitation because it can capture the skewness 
and variability of precipitation data, which are often 
positively skewed and exhibit overdispersion. The 
SPI formula involves transforming the observed 
precipitation amounts to standard normal deviates 
using the cumulative distribution function (CDF) of 
the Gamma distribution, which is given by: 
F(Xᵢ) = P(X ≤ Xᵢ) = Φ[ (ln(Xᵢ) - ln(μ)) / σ ] …(3) 
where: 
Φ = standard normal CDF 
ln = natural logarithm 
Xᵢ, μ, and σ are as defined in the SPI formula. 
 
Once the transformed values have been calculated, 
they can be converted to SPI values using the 
inverse standard normal CDF. The resulting SPI 
values can then be interpreted in terms of drought 
severity and compared across different locations 
and time periods. 
In this study, the SPI was used to characterise 
agricultural drought patterns in the Lesotho 
Highlands commercial dams. The SPI was calculated 
for two time scales, 3 and 6 months, to provide a 
comprehensive picture of the drought situation in 
the area. The SPI was calculated using monthly 
precipitation data from 1981 to 2021 obtained from 
the NASA online database. The SPI values were then 
classified into different categories based on the 
thresholds provided by the National Center for 
Atmospheric Research (2023), as shown in Table 1. 
The use of the SPI allowed for a standardized and 
objective assessment of the precipitation levels and 
drought conditions in the Lesotho Highlands, 
providing valuable information for the sustainable 
management of water resources and the 
development of resilient agricultural systems in the 
region. 
Table 1: The Standardized Precipitation Index (SPI) 

classification 

SPI Classification  

2> Extremely wet 
1.5 to 1.99 Very wet 
0 to 0.99 Moderately wet 
0 to -0.99 Near normal  
-1 to -1.49 Moderate drought  
-1.5 to -1.99 Severe drought  

 
Source: National Center for Atmospheric 
Research, 2023 
The Mann-Kendall test is a non-parametric 
statistical test used to determine if there is a 
monotonic trend in a time series dataset. In this 

research, the Mann-Kendall test was used to assess 
the trend of the precipitation index computed from 
the Standardized Precipitation Index (SPI) values 
(Hamed, 1998). The test was used to determine if 
there was a significant trend in the precipitation 
index over time, which would indicate a change in 
the precipitation patterns in the Lesotho Highlands 
commercial dams. The Mann-Kendall test is a 
widely used method for trend analysis in hydrology 
and climatology, as it can be applied to non-normal 
data and does not require the assumption of a 
specific distribution for the data. The test works by 
computing the sum of the ranks of the deviations 
from the mean, and then comparing this value to 
the expected value under the null hypothesis of no 
trend. If the observed value is significantly different 
from the expected value, then a trend is considered 
to be present (Mann, 1945). In this research, the 
Mann-Kendall test was applied to the SPI-3 and SPI-
6 values to assess the trend in the SPI values over 
time.  
Drought parameters are statistical measures used 
to quantify and characterise the severity, 
frequency, and duration of drought events (Girma, 
et al. 2019). In this study, the following drought 
parameters were used to characterise the 
agricultural drought patterns in the Lesotho 
Highlands commercial dams: (i) Average Dry Spell 
Duration (ADSD): This parameter measures the 
average duration of consecutive dry spells, defined 
as a series of consecutive days with less than a 
specified threshold of precipitation. ADSD = (sum of 
dry spell duration) / (total number of dry spells). 
ADSD was used to assess the frequency and 
duration of drought events in the region. (ii) 
Average Dry Spell Index (ADSI): This parameter 
measures the average severity of drought events, 
defined as the accumulated precipitation deficit 
over a specified period of time. ADSI was used to 
assess the severity of drought events in the region, 
and to compare the drought situation between 
different stations (Tsakiris and Vangelis, 2005). ADSI 
= (sum of SPI values during dry spells) / (total 
number of dry spells).  (iii) Drought Tendency (DT): 
This parameter measures the likelihood of drought 
events, defined as the percentage of the total 
number of days with precipitation deficit relative to 
the total number of days in a specified period of 
time. DT was used to assess the likelihood of 
drought events in the region and to compare the 
drought situation between different stations. DT = 
(sum of the slope of SPI values during dry spells). (iv) 
Longest Dry Spell Duration (LDSD): This parameter 
measures the longest duration of consecutive dry 
spells, defined as a series of consecutive days with 
less than a specified threshold of precipitation. 
LDSD was used to assess the most severe drought 
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events in the region and to compare the drought 
situation between different stations. (v) Longest 
Multi-Year Drought (LMYD): This parameter 
measures the longest duration of consecutive dry 
spells, defined as a series of consecutive years with 
less than a specified threshold of precipitation 
(McKee et al. 1993). LMYD was used to assess the 
most severe drought events in the region over 
multiple years and to compare the drought 
situation between different stations. (vi) Largest 
Single Year Drought (LSYD): This parameter 
measures the largest precipitation deficit in a single 
year, defined as the accumulated precipitation 
deficit over a specified period of time. LSYD was 
used to assess the most severe drought events in 
the region in a single year and to compare the 
drought situation between different stations. (vii) 
Standard Total Accumulative Dry Spell (STCD): This 
parameter measures the total accumulated 
precipitation deficit over a specified period of time 
(Hayes et al, 1999). STCD was used to assess the 
overall drought situation in the region and to 
compare the drought situation between different 
stations.  
The Kruskal-Wallis test is a non-parametric 
statistical method used to compare the median of 
two or more groups. In this study, the Kruskal-
Wallis test was used to determine if there were 
significant differences in the drought parameters 
(ADSD, ADSI, DT, LDSD, LMYD, LSYD, STCD, and N) 
across the four commercial dams in the Lesotho 
Highlands. The Kruskal-Wallis test is a non-
parametric alternative to the one-way ANOVA, 
which is used when the assumptions of normality 
and equal variances are not met. If the test statistic 
is larger than the critical value, the null hypothesis 
is rejected, and it can be concluded that there is a 
significant difference in the median of the drought 
parameters across the different dams. The Kruskal-
Wallis test works by ranking the data and 
comparing the ranks across the different groups, 

which makes it robust to the violation of normality 
assumptions. The test statistic, H, is calculated as 
the sum of the squared differences between the 
observed ranks and the expected ranks, normalized 
by the number of observations in each group. The 
null hypothesis is that there is no significant 
difference in the median of the drought parameters 
across the different dams, and the alternative 
hypothesis is that there is a difference. The test 
statistic, H, is then compared to a critical value from 
a chi-squared distribution with (k-1) degrees of 
freedom, where k is the number of groups being 
compared. 
 
Results and discussion  
Table 2 shows the mean values for the Standardized 
Precipitation Index (SPI-3) of the four selected 
weather stations (dams). Three out of the four 
dams have very small mean values (in the order of 
e-7), while one has a slightly larger mean value (in 
the order of e-6). This suggests that, on average, the 
drought level at the first three dams is relatively 
similar, while the fourth dam (Muela Dam) may 
receive slightly more precipitation on average 
hence less dry comparatively. In terms of variance, 
it can be seen that all four dams have a variance of 
approximately 1. This indicates that the level of 
variability in precipitation leading to drought is 
relatively similar across all four dams. It's worth 
noting, however, that the SPI-3 is a standardized 
index that accounts for differences in precipitation 
climatology across different locations. This means 
that the variance may not necessarily reflect the 
absolute variability of precipitation at each dam, 
but rather the variability relative to the long-term 
average at each location. Finally, the means and 
variances of the SPI-3 suggest that the precipitation 
levels at the four dams are relatively similar, with 
Muela Dam potentially receiving slightly more 
precipitation on average.  

 

Table 2: SPI-3 descriptive statistics 
 SPI-3  

   Katse Dam  Metolong Dam  Mohale Dam  Muela Dam  

Valid   478   478   478   478   

Mean   3.292e -7   -2.849e -7   -7.308e -8   7.634e -7   

Std. Deviation   1.001   1.001   1.001   1.001   

Variance   1.002   1.002   1.002   1.002   

Skewness   -0.404   -0.650   -0.528   -0.413   

Std. Error of Skewness   0.112   0.112   0.112   0.112   

Kurtosis   0.280   0.515   0.380   0.344   

Std. Error of Kurtosis   0.223   0.223   0.223   0.223   

Shapiro-Wilk   0.988   0.972   0.981   0.987   
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Table 2: SPI-3 descriptive statistics 
 SPI-3  

   Katse Dam  Metolong Dam  Mohale Dam  Muela Dam  

P-value of Shapiro-Wilk   < .001   < .001   < .001   < .001   

Minimum   -3.358   -3.575   -3.312   -3.419   

Maximum   2.748   2.573   2.662   2.636   
 

 
Looking at the mean values for the SPI-6 as shown 
in table 3, all four dams have very small mean 
values, with the largest being in the order of e-6. 
This indicates that, on average, the precipitation 
levels at all four dams are very close to zero, 
although there are differences in the sign of the 
mean values. Katse Dam has the smallest mean 
value, indicating that it receives slightly less 
precipitation on average than the other three dams. 
In terms of variance, all four dams have a variance 
of approximately 1. This indicates that the level of 

variability in precipitation is relatively similar across 
all four dams, similar to what we saw in the SPI-3 
analysis. However, there are some differences 
between the SPI-3 and SPI-6 analyses. For example, 
the SPI-6 mean values are generally smaller than 
the SPI-3 mean values, indicating that the SPI-6 
index may be more sensitive to short-term 
fluctuations in precipitation. Additionally, the 
Shapiro-Wilk test for normality suggests that the 
SPI-6 values at Katse Dam and Mohale Dam may not 
be normally distributed, which could be due to 
extreme values or other factors. 

 

Table 3: SPI-6 descriptive statistics 
 SPI-6  

   Katse Dam  Metolong Dam  Mohale Dam  Muela Dam  

Valid   475   475   475   475   

Mean   -1.451e -6   2.881e -7   -2.781e -7   -6.778e -8   

Std. Deviation   1.001   1.001   1.001   1.001   

Variance   1.002   1.002   1.002   1.002   

Skewness   -0.280   -0.477   -0.339   -0.251   

Std. Error of Skewness   0.112   0.112   0.112   0.112   

Kurtosis   -0.094   0.426   0.158   -0.114   

Std. Error of Kurtosis   0.224   0.224   0.224   0.224   

Shapiro-Wilk   0.992   0.982   0.991   0.993   

P-value of Shapiro-Wilk   0.013   < .001   0.005   0.027   

Minimum   -2.916   -3.046   -3.197   -2.876   

Maximum   2.600   2.837   2.812   2.797   
 
 

Table 4 shows the results of the Mann Kendall's 
trend test for the SPI-3 values at each of the four 
dams. This test is used to detect trends (positive or 
negative) in time series data. The test results 
include the following parameters for each dam: (i) 
S: The Mann Kendall's test statistic. This parameter 
measures the strength and direction of the trend. 
Negative values indicate a decreasing trend, while 
positive values indicate an increasing trend. Larger 
absolute values of S indicate stronger trends, (ii) Z: 
The standard normal test statistic. This parameter 
measures the significance of the trend. Larger 
absolute values of Z indicate a higher level of 
significance (i.e., a lower p-value) and (iii) p-value: 

The probability of obtaining a test statistic as 
extreme or more extreme than the observed value, 
assuming no trend is present. A p-value less than 
0.05 is typically considered statistically significant, 
indicating strong evidence for the presence of a 
trend. Looking at the results, it can be seen that 
there is evidence for a significant decreasing trend 
in SPI-3 values at Katse Dam (S = -7707, Z = 2.2087, 
p-value = 0.027198), Mohale Dam (S = -12582, Z = 
3.6059, p-value = 0.000311), and Muela Dam (S = -
12796, Z = 3.6673, p-value = 0.000245). This 
suggests that these three dams are experiencing a 
decreasing trend in precipitation levels over time 
hence drought. On the other hand, there is 
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evidence for a significant increasing trend in SPI-3 
values at Metolong Dam (S = -17553, Z = 5.0307, p-
value = 4.89E-07). This indicates that Metolong 
Dam is experiencing an increasing trend in 

precipitation levels over time. The figure 1 shows 
the plot of SPI-3 data over the selected 
dams/stations.  

 
Table 4: SPI-3 Mann Kendall’s trend test 

Parameter Katse Dam Mohale Dam Muela Dam Metolong Dam 

S : -7707 -12582 -12796 -17553 
Z : 2.2087 3.6059 3.6673 5.0307 
p-value 0.027198 0.000311 0.000245 4.89E-07 

 
 

 
Figure 1: SPI-3 for Lesotho Highlands commercial dams (1981-2021) 

 
The Table 5 shows the results of the Mann Kendall 
trend test for the Standardized Precipitation Index 
(SPI-6) at four different dams: Katse Dam, Mohale 
Dam, Muela Dam, and Metolong Dam. From this 
table, it can be seen that the p-values for all four 
dams are less than 0.05, indicating evidence of a 
significant downward trend in the precipitation 

index (SPI-6). The Z-values are also relatively large, 
further supporting the evidence of a trend. These 
results suggest that the dryness of the area around 
the dams has increased over the time period 
represented by the SPI-6 data. The figure 2 shows 
the plot of SPI-6 data over the selected 
dams/stations. 

 
Table 5: SPI-6 Mann Kendall’s trend test 

Parameter Katse Dam Mohale Dam Muela Dam Metolong Dam 

S : -7942 -14108 -15418 -21688 

Z : 2.2618 4.0181 4.3912 6.1771 

p (no trend): 0.023708 5.87E-05 1.13E-05 6.53E-10 
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Figure 2: SPI-6 for Lesotho Highlands commercial dams (1981-2021) 

 
The Table 6 shows the results of various drought 
parameters at four different dams (Katse dam, 
Mohale dam, Muela dam, and Metolong dam) for 
two different temporal scales: SPI-3 and SPI-6. The 
drought parameters include: Longest Single Year 
Drought (LSYD), Drought Tendency (DT), Number of 
consecutive SPI-values (N), Average Dry Spell 
Duration (ADSD), Standard Total Accumulative Dry 
Spell (STCD), and Average Dry Spell Index (ADSI). 
From the table, it can be seen that the values of the 
drought parameters vary between the different 
dams and temporal scales. The values of LSYD, DT, 
N, ADSD, and STCD are generally lower for the SPI-
6 data, which suggests a more severe drought 
situation in the longer-term perspective. The value 

of ADSI is also generally lower for the SPI-6 data, 
further supporting the evidence of a more severe 
drought situation. The Table 7 shows the results of 
a Kruskal-Wallis test for equal medians, which was 
used to determine if the medians of two or more 
independent samples are equal. The p-values in the 
table are both very close to 1, indicating no 
evidence of a significant difference between the 
medians. Based on these results, it can be 
concluded that there is no significant difference 
between the stations in terms of the drought 
parameters being analysed. This suggests that the 
stations have similar levels of drought, as measured 
by the parameters being used. 

 
Table 6: Temporal scales drought parameters 

Parameter Katse dam Mohale dam Muela dam Metolong dam 

Temporal scale SPI-3 SPI-6 SPI-3 SPI-6 SPI-3 SPI-6 SPI-3 SPI-6 
LSDS -16.97 -35.92 -18.20 -23.66 -17.07 -33.32 -20.73 -39.61 
D 218 218 215 216 218 228 208 213 
W 236 257 263 259 260 247 270 262 
DT 0.92 0.85 0.82 0.83 0.84 0.92 0.77 0.81 
N 59 40 50 38 59 42 49 37 
ADSD 3.69 5.45 4.30 5.68 3.69 5.43 4.24 5.76 
STCD -180.74 -190.24 -188.89 -187.97 -185.67 -190.09 -188.60 -186.02 
ADSI -3.06 -4.76 -3.78 -4.95 -3.15 -4.53 -3.85 -5.03 
LYSYD -2.69 -2.92 -3.31 -3.20 -3.42 -2.88 -3.57 -3.05 

 
Table 7: Kruskal-Wallis test for equal medians 

H (chi2): 0.2117 0.03303 
Hc (tie corrected): 0.2118 0.03303 
p (same): 0.9757 0.9984 
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Conclusion and recommendations  
In conclusion, the study aimed to 

characterise agricultural drought patterns in the 
Lesotho Highlands commercial dams using the SPI 
and the theory of runs. The results showed that the 
precipitation levels at the four dams are relatively 
similar, with Muela Dam potentially receiving 
slightly more precipitation on average. The SPI-3 
and SPI-6 analyses both showed evidence of a 
significant downward trend in the precipitation 
index, suggesting an increase in dryness in the area 
around the dams. The drought parameters showed 
that there is no significant difference between the 
stations in terms of the drought situation, indicating 
similar levels of drought across the different dams. 
Based on these findings, the study makes the 
following recommendations to support the 
sustainable management of water resources and 
the development of resilient agricultural systems in 
the region. (i) There is a need for regular monitoring 
of precipitation levels and drought conditions to 
ensure that the water resources are managed in an 
efficient and sustainable manner. This could be 
done through the continued use of the SPI and 
other drought indices to track trends and assess the 
severity of droughts over time. Additionally, data 
on other factors affecting the water resources, such 
as evaporation, groundwater recharge, and water 
use patterns, should be collected and analysed to 
support informed decision-making. (ii) Secondly, 
water conservation and management strategies 
should be developed and implemented to reduce 
the impact of droughts on the region's water 
resources and agricultural systems. This could 
include the use of water-saving technologies, such 
as rainwater harvesting, irrigation systems, and 
other water-saving measures. (iii) The use of 
drought-resistant crop cultivars and water-efficient 
agricultural practices could help to reduce the 
impact of droughts on agricultural productivity and 
support the development of resilient agricultural 
systems. (iv) Finally, there is a need for increased 
collaboration between the different stakeholders 
involved in water management, including 
government agencies, water users, and 
researchers. This could involve the development of 
stakeholder engagement and consultation 
processes, as well as the establishment of 
partnerships and networks to share information, 
knowledge, and best practices in water 
management and drought preparedness. 
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